WORKBOOK

ELECTROLYTE AND ACID-BASE MASTERY CERTIFICATION

COURSE

WORKBOOK

ELECTROLYTE AND ACID-BASE MASTERY CERTIFICATION COURSE

Table of Content

Part 1. Potassium derangements

Chapter 1:	
Potassium homeostasis	
Chapter 2:	
Approach to a diagnosis of hypokalemia	11
Chapter 3:	
Indications for treatment of hypokalemia	14
Chapter 4:	
Parenteral potassium supplementation (intravenous = IV)	16
Chapter 5:	
Refractory hypokalemia	20
Chapter 6:	
Oral potassium supplementation	21
Chapter 7:	
Approach to a diagnosis of hyperkalemia	23
Chapter 8	
Approach to treatment of hyperkalemia	26

Part 2. Sodium derangements

Chapter 18
Overview of traditional approach (Henderson-Hasselbalch)
Chapter 19
Respiratory acidosis100
Chapter 20
Respiratory alkalosis
Chapter 21
Metabolic acidosis
Chapter 22
DKA, ethylene glycol toxicity, uremic and lactic acidosis
Chapter 23
Hypoadrenocorticism and renal tubular acidosis (RTA)127
Chapter 24
Bicarbonate therapy
Chapter 25
Metabolic alkalosis

Part 1. Potassium	derangements
-------------------	--------------

CHAPTER 1:

Potassium homeostasis

potassium functions as the primary cation inside cells. More than 95% of the total body potassium resides within the cells. While the typical concentration of extracellular potassium is approximately 4-5 mEq/L, the concentration inside the cells reaches about 140mEq/L.

It is important to recognize that serum potassium levels may not accurately represent the overall potassium content of the body in specific situations.

To maintain a potassium concentration gradient between the inside and outside of cells, an active pump called Na+-K+-ATPase is responsible for transporting potassium ions into the cell while expelling sodium ions out of the cell in a 3:2 ratio.

The regulation of potassium must be able to adjust to changes in potassium intake from the diet and intravenous fluids administered to hospitalized patients.

Distribution of potassium in intracellular vs. extracellular space (note: extracellular space includes both interstitial and intravascular compartments)

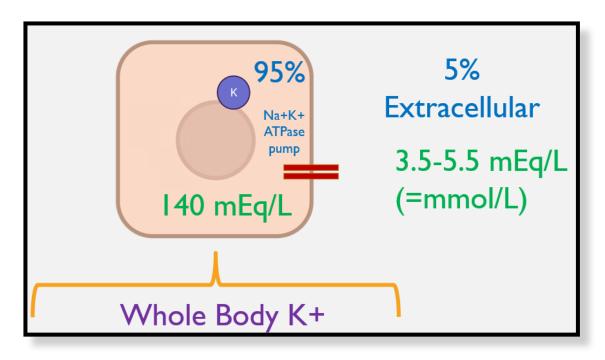


FIGURE 1

There are two vital mechanisms that work to keep the serum potassium concentration within a normal range:

- internal potassium balance, which involves the distribution of potassium between the intracellular and extracellular fluid compartments
- external potassium balance, which entails the kidney's excretion of excess potassium

Abnormal serum potassium levels may arise due to disturbances in potassium intake, imbalances in internal potassium distribution, or issues with external potassium excretion.

External potassium balance

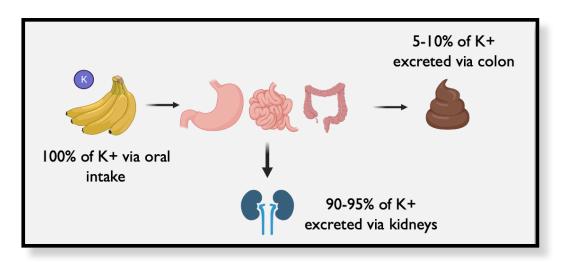


FIGURE 2

Internal potassium balance

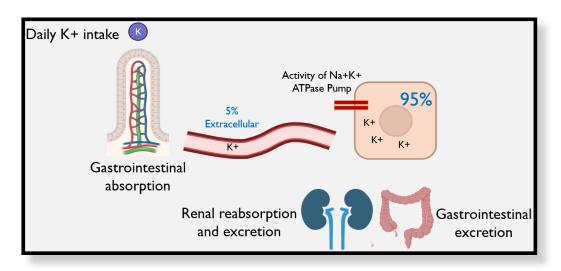


FIGURE 3

Potassium translocation

Potassium may shift in and out of cells secondary to different physiologic and pathologic conditions.

Common physiologic and pathologic factors resulting in potassium shifting in and out of the cells

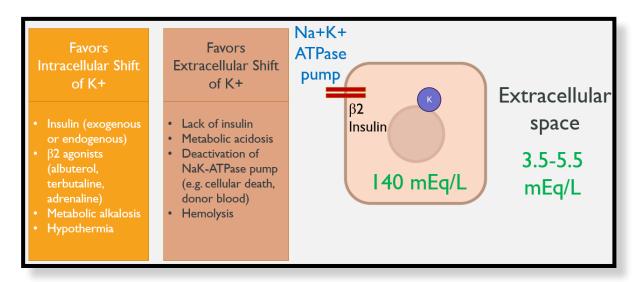


FIGURE 4

Effect of acid-base status on potassium translocation

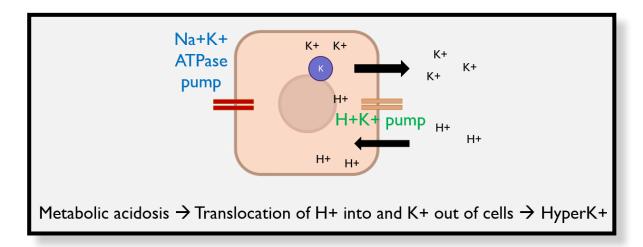


FIGURE 5

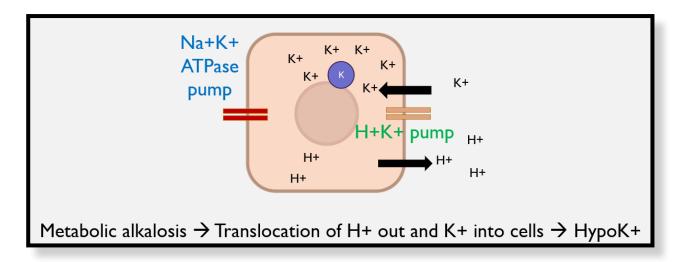


FIGURE 6

CHAPTER 2:

Approach to a diagnosis of hypokalemia

All causes of hypokalemia can be divided into 3 big groups:

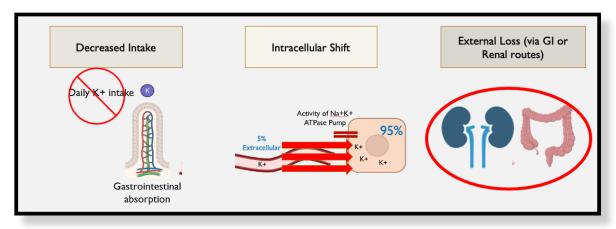


FIGURE 7

Recommended step-wise diagnostic approach to all patients with hypokalemia may include the following 6 steps:

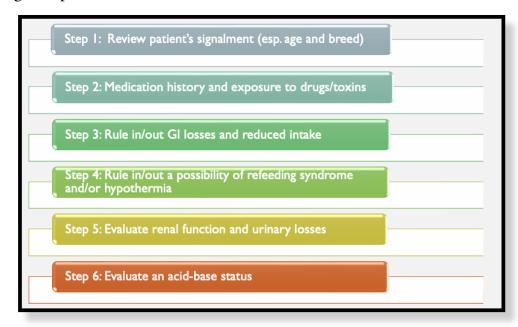


FIGURE 8

NOTE: You should complete all steps even if the cause of hypokalemia is apparent in early steps because some patients may have a multifactorial nature of hypokalemia.

Diagnosis of hypokalemia checklist

Check off all that apply to your patient:
Step 1: Review patient's signalment Burmese cat? An old cat (a higher risk for hyperaldosteronism and chronic kidney disease)
 Step 2: Medication history and exposure to drugs and toxins K-deficient fluids in hospitalized anorexic patients Loop/thiazide diuretics (as opposed to spironolactone) Insulin and/or dextrose administration Albuterol, terbutaline, epinephrine, any β2-agonists Rattlesnake envenomation
 Step 3: Rule in/out gastrointestinal losses and reduced intake □ Presence of any GI signs (vomiting/diarrhea) in a hypoK+ patient will be suggestive of K+ losses □ OPTIONAL □ Calculate fractional excretion of K (Fe K) may help you to differentiate between GI losses vs. RENAL losses □ Fe K = (Urine K+/ Blood K+) / (Urine creatine/Blood creatinine) x 100% □ Fe K > 10-12% is suggestive of excessive renal losses
Step 4: Is there a possibility of a refeeding syndrome? ☐ Prolong starvation ☐ Severely malnourished patient
Step 5: Evaluate renal function and urinary losses □ Polyuria (>2 ml/kg/hr) → may cause potassium wasting □ Oligoanuria (<0.5-1 ml/kg/hr) is unlikely associated with hypokalemia □ Recent urethral obstruction → may lead to postobstructive diuresis
 Step 6: What is the acid-base status? □ Metabolic or respiratory alkalosis (↑pH) → intracellular potassium shifting − Hypokalemia (↑pH→↓K) □ Metabolic acidosis due to inorganic acid accumulation (uremic, HCl) (↓pH) − extracellular potassium shifting → Hyperkalemia (↓pH→↑K) □ EXCEPTION: Renal Tubular Acidosis may cause potassium wasting → hypokalemia

CONCLUSION: Check off the most likely cause(s) of hypokalemia based on responses above:
☐ Decreased intake (anorexia, hyporexia)
☐ Intracellular shift
☐ Congenital (e.g. Burmese cat)
☐ Medication/drug/toxin/envenomation (specify)
☐ Refeeding syndrome
☐ Metabolic alkalosis
☐ External loss (GI or Renal)
☐ Gastrointestinal losses
☐ Renal losses
☐ Renal tubular acidosis (type I or II)